Sparse sampling and tensor network representation of two-particle Green's functions
نویسندگان
چکیده
منابع مشابه
Sampling Functions and Sparse Reconstruction Methods
SUMMARY In this paper we investigate the effects of different sampling operators on the performance of sparse reconstruction methods. The common paradigm in seismic data processing is to favor regular sampling. We will show, however, that regular sampling often hampers our data recovery efforts. Random sampling, on the other hand, can lead to algorithms where the reconstruction is almost perfec...
متن کاملNeuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion
In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...
متن کاملNeural network representation of tensor network and chiral states
We study the representational power of a Boltzmann machine (a type of neural network) in quantum many-body systems. We prove that any (local) tensor network state has a (local) neural network representation. The construction is almost optimal in the sense that the number of parameters in the neural network representation is almost linear in the number of nonzero parameters in the tensor network...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملTensor-Based Sparse Representation Classification for Urban Airborne LiDAR Points
The common statistical methods for supervised classification usually require a large amount of training data to achieve reasonable results, which is time consuming and inefficient. In many methods, only the features of each point are used, regardless of their spatial distribution within a certain neighborhood. This paper proposes a tensor-based sparse representation classification (TSRC) method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SciPost Physics
سال: 2020
ISSN: 2542-4653
DOI: 10.21468/scipostphys.8.1.012